|
tFVs֧΄Y(ji)(gu)cܵӰtFVs֧΄Y(ji)(gu)cܵӰ 28 9 20139 o C W(xu) . 28No. 9 Sep. , 2013of Inorganic Materials ¾̖: 1000-324X(2013)09-1019-06 DOI: 10.3724/SP.J.1077.2013.12689 tFVs֧΄Y(ji)(gu)cܵӰ 1,2, Lji1,2, ܊1,2, κꂥ1,2, 1,2, 1,2 (̫ԭW(xu) 1. ϿƌW(xu)čW(xu)Ժ; 2. ²Ͻcc; ̫ԭ 030024) ժ Ҫ: ԵƷλCLK6-62X\Ҫԭ, ßoџg(sh)ƂtFVsX\ʯ͉֧΄, , tFVsЧMtͰĪʯİl(f), , tFV2wt%r, ԇӟY(ji)ضȿɽ60 (1480 浽1420 ), 1.8%(δsԇ: 5.1%), ^õƏVǰ P(gun) I ~: X\; tFV; ʯ͉֧΄; ЈD̖: TQ174 īI(bio)Ra: A Feng1,2, WU Yao-Peng1,21,21,2, LIANG Wei1,2 030024, China): 2O3) wt%) on phase composition, microstructure and 2-2xCr2xO3,0x1 and optimized proppant sample with 2wt% chromite doped, sintered at 1420 for 2 h shows a breakage ratio of only 1.8% under the pressure of 69 MPa. Furthermore, 2 wt% chromite doping decreases the sintering temperature by 60 (from 1480 to 1420 ). This process enables the production of high-strength fracturing proppant from low-rank mineral materials and demonstrates a promising practical application. words: bauxite ; chromite; fracturing proppant; breakage ratio ֧΄֧;ˮѲγɵѿp, ṩߝBԭͨ, Ķȵھ;a(chn)[1-3]о, ֧΄a(chn)g(sh)ʹξƽa(chn)30%~50%, @Ч ͶMõ3~7[4-7], ҇ʯ̽82%͝B, ڃӵͿ͝BǾ|(zh)ȱc, 회ʩ֧΄a(chn)_l(f)[7] ո: 2012-11-14; յĸ: 2012-12-26 Ŀ: úD(zhun)c_Ż(09-102); ȫʿ(2012M52060); ̫ԭW(xu)2012У/ (2012L052) Key Laboratory of Coal Conversion(09-102); China Postdoctoral Science Foundation(2012M52060); Spe-cial/Youth Foundation of Taiyuan University of Technology (2012L052) ߺ: (1965-), , . E-mail:sxgaof@http://www.wenkuxiazai.com o C W(xu) 28 Ŀǰ, (ni)֧΄ͨ^oџg(sh)Ƃ, ҪԭϞX\, ͨ^ӟY(ji){(dio)ԇ^ò, ԇ69 MPa]ωһ3%, Rѩ[8]X\ճҪԭ, ͨ^iVƂ69 MPaʞ4.1%֧΄; [9]ԸFX\Ҫԭ, oiFۺճY(ji)Ƃ69 MPaʞ3.4%ĸߏ֧΄ԇЈϬF(xin)Юa(chn)Ʒ, Carbo˾a(chn)CARBOProp֧΄ϵЮa(chn)Ʒ, 69 MPa
4.4%~6.3%֮g[10] X\MA(y)p̎ȥgM(Y(ji)ˮЙCP̼}), øԭ(繤I(y)X)@ԇӿ; ߺ[11]ԭA(y)p̎ˇ@69 MPa1.61%֧΄ԇ; wGs[12]ùI(y)XƂ86 MPaʣ2.5%Čԇ; Duenckel[13](ճ)Y(ji)̎Ƃweܶ3, 69 MPaʞ2.9%֧΄ƷrЧƂ֧΄(69 MPaʣ3%)g(sh)y} о, , , XմɵęCе, 95мm O3ʹƷĥpʽ15%[17]; 9.5% ~ 12.5%tsɌuij͉һ, 70~100 MPa150 MPa[18] FڸߜγҺM, ɼق|(zh)^̴Mԇܻ, џض[19-21] ϵy(tng)оtFVӄX\ʯ ͉֧΄Y(ji)(gu)ܵӰ, CLK6-62X\ɹƂmI(y)ĸߏ֧΄ 1 1.1 (37 mY(44 mY1(a)ʾXRDDV֪, (DK)XAlOOH((bio)(zhn)Ƭ̖: ߎXʯAl4(OH)8(Si4O10)((bio)(zhn)D1(b)tFV, Y(ji)FeCr2O4((bio)(zhn)Ƭ̖: ԭϻW(xu)M(1)ʾ x R02͏ϙC, EX115weܶȜyԇx, SXL-1700ʽ늠t, SZX7wҕ@Rϵy(tng), WHY-300͉ԇC, D8-AdvanceX侀x, JSM-6700F͈l(f)@R D1 ԭ(a)X\(b)tFVXRDDV 1. 1 XRD patterns of the raw materials (a) bauxite and (b) chromite 1 ԭϵĻW(xu)M/wt% 1 Chemical composition of the raw materials /wt% materials Bauxite Chromite Al2O3 SiO2 Fe2O3 TiO2 CaO MgO Cr2O3 FeO Ignition loss 66.80 10.4 2.40 2.32 1.21 0.21 0.04 - 14.20 1.28 7.23 - .06 7.89 46.21 22.37 .31 0.23 9 , : tFVs֧΄Y(ji)(gu)cܵӰ 1021 .3 о֧΄ƂwE: ȷQȡԭϼEIRICH-R02ͻϙCЙCе8~10 min; ȡԭ|(zh)10%~12%ˮϙCʹϳ, Su, Yȡ710~1000 mİƷ; ֮105 lºˮ<5wt% ; Ȼ5 /minصһضȺ2 hџ̎, ȻYȡ425~850 mџԇӱ?zhn)á̖G0G1G2G3G4G5ԇӷքeʾԇԭtFVռ|(zh)ٷֱȞ01wt%2wt%3wt%4wt%5wt%ԇܰЇʯȻИI(y)(bio)(zhn)SY/T 5108-2006MМyԇ[22]ԇƂ̈DD2ʾ
2Y(ji)cӑՓ 2.1 tFV֧΄Y(ji)ضȵӰ D3oԇweܶ-џضȵP(gun)ϵ ɈD3֪, ԇӳF(xin)weֵܶğY(ji)ضcStFVӶ(Y(ji)ض: TG0= 1480 > TG1 = 1450 > TG2, TG3, TG4 = 1420 >TG5 = 1390 )ͬr, ߓsԇG4G5(jng)1480 ̎Y(ji)K(δܫ@(yng)weܶȔ(sh)(j)), tFVMƷߜҺ, Ķ˟Y(ji)ض; Y(ji)tFVɷַJ, ҺγɿtFV(dng)еFߜ[19-21] ĈD3߀l(f)F(xin), ԇG0, sԇӵij, ; ԼY(ji)^w, , (ni)ך D2 ̈D D3 ֧΄weܶcџضȵP(gun)ϵ . 3 Variation of bulk density with the sintering temperature
o C W(xu) 28 D4 ֧΄69 MPalcџضȵP(gun)ϵ Fig. 4 Variation of breakage ratio with sintering temperature at 69 MPa
D5 XRDDV FIG. 5 weÛ, ĶweܶȽ D4ԇ69 MPa]ωµcџضȵP(gun)ϵDГsԇSџض߳F(xin)Ƚ׃څ, @һڅcԇweܶȵ׃څ෴MһδscsԇӰl(f)F(xin), ֵF(xin)ʵĜضc((yng)Ĝضc: TG0=1480 > TG1=1450 > G2, TG4 = 1420 >TG5=1390 )cͬ, ̶ܻP(gun): ȵຬ, ; ض1420 ̎G2(δsԇӽ64.7%(5.1%), ָ(bio)(3%~6%)[8-10] , ¹ܷ(yng): )Al2O3xCr2xO3(0<x<1), īI[13-16], SEMƬɈD6(a)~(c): 1360 ̎G2ԇ(D6(a))ڴֲ, M, ˘Ʒ69 MPaʸ_8.9%; (dng)џضȞ1420 r(D6(b)), ԇгF(xin)e, E1.8%џضMһ1480 , tԇӳߴ@, ͬrԇӵweܶ@(D3), ԇӳF(xin)^F(xin), ԓԇӵߵ4.4%Mһͬ̎ضµδs͓sԇ(D6(c),(d))֪, tFVԇаܶ@δsƷG2Ʒ^(q)V, tԪҪֲwӅ^(q)(6at%~8at%), Ӆ^(q)t, ԔඨwӞt, ӞĪʯĪʯɵıҪlǟɕrmҺMݺAl2O3/SiO2[25]X\D-K, ߎXʯ980~1200 rֽһĪʯcSiO2[26]((yng)ʽ: 3(Al2O32SiO2)3Al2O32SiO2 4SiO2); (dng)ضȸ1100 r, ÓuˮXʯ_ʼD(zhun)γɄ[27]FeO-SiO2ϵwڻضȞ1170 [28-29], tFVļMҺ^͜ضγSضȵ, ҺճȽ, ɵҺc|ıܽ-Al2O3, ڽ|γm 2.2 tFVsC̽ D5ԇӽ(jng)џض̎XRDDV, l(f)F(xin)ԇMɻͬ(: ; ξ: Ī; : FX)ԇЄStFVӶͽǶƫ(211): 37.8237.7637.7437.68, (210): 43.3843.3443.3243.24, (321): 57.5057.4657.4257.34), nm) tFVеİ돽^tx(Cr3 : 0.069 ȡ˄а돽^СXx(Al3 : 0.053 nm) γ˾(sh)tࡣīIо, t1100 r_ʼйγt 9
, : tFVs֧΄Y(ji)(gu)cܵӰ 1023 D6 2. 6 (a) 1360 ,G2; (b) 1420 , G2; (c) 1480 , G5 ĪʯγɵAl2O3/SiO2, Īʯw[30]D6(e)G5ԇӵĔSEMƬ, wwY(ji)(gu), ^ĈA(ni), F(xin), չ, ԇʞ6.2%, t; 2), Y(ji)ƶ, γmճY(ji)ĸߏȏ(f)w, ְl(f)]Mֵă(yu), ֿͬdµ׃κƉ .83 g/cm3, 69MPa]ω1.8%ğY(ji)ԇ, δsԇ64.7%, џضȽ60 : [1] Lee D S, Elsworth D, Yasuhara, et al. Experiment and modeling to the effects of proppant-pack diagenesis on fracture treat-ments. Journal of Petroleum Science and Engineering, 2010, 74(1/2): 67-76. [2] Wen Q Z, Zhang S,Wang L, et al. The effect of proppant embed-ment upon the long-term conductivity of fractures. Journal of Pe-troleum Science and Engineering, 2007, 55(3/4): 221-227. [3] Hammond P S. Setting and slumping in a Newtonian slurry, and for proppant placement. Chemical Engineering Sci-ence , 1995, 50(20): 3247-3260. [4] Rickards A R, Brannon H D, Wood W D, et al. High Strength, Ul-tra-lightweight Proppant Lends New Dimensions to Hydraulic Fracturing Applications. Society of Petroleum Engineers, 2003: 1-4. [5] Qi Z L ,Jiao G Y. Method to predict Proppant Flowback in Frac-tured Gas Well. Procedia Environmental Sciences 2011: 325-332. [6] WANG Cheng-Wang, MA Hong-Xing, LU Hong-Jun. Results for ceramic proppant application in xifeng oilfield. Well Testing, 2005, 14(6): 31-33. [7] LIU Yan-Yan, LIU Da-Wei, LIU Yong-Liang, et al. Study pro-gresses of hydraulic fracturing technology. Drilling Fluid and Completion Fluid, 2010, 28(3): 75-78. [8] MA Xue, YAO Xiao. Preparation and mechanisms of light-weight strength ceramisite proppant. Journal of Ceramics, 2008, 29(2): 91-95. Y(ji)Փ ԵƷλCLK6-62X\Ҫԭ, tFVY(ji)ƂmI(y)ĉ֧΄о, tFVԴMߏtγɼeĪʯİl(f), Ķֿͬdµ׃κƉԇtFVڽ͟Y(ji)ضY(ji)ԇweܶr, ͡џضȞ1420 , tFV2wt% o C W(xu) 28 [9] . һNܶȸߏ͚⾮֧΄Ƃ䷽. Ї: 102061159, 2011.05.18. [10] Palamara Thomas C, Wilson Brett Allen. Methods for Producing Particles from a Slurry of an Alumina-containing Raw Material. US 2006/0219600 Al, 2006.10.05. [11] GAO Hai-Li, YOU Tian-Cai, WU Hong-Xiang, et al. The devel-opment of high-strength oil hydraulic fraturing. Ceramics, 2006 (10): 43-46. [12] ZHAO Yan-Rong, WU BO-Lin, WU Ting-Ting. The development high-alumina ceramic proppants. China Ceramics, 2010, 46(2): 46-49. [13] Duenckel Robert, Edmunds Mark, Eldred Benjamin, et al. Sintered Pellets. USA: US 20100126728Al.2010.05.27. [14] Han S C, Yoon D Y, Brun M K. Migration of grain boundaries in induced by chromia addition. Acta Metall. Mater., 1995, 43(3): 977-984. [15] Marcin C, Katarzyna P. Processing, microstructure and mechanical of Al2O3-Cr nanocomposites. Journal of European Ce-ramic Society, 2007, 27(2/3): 1273-1279. [16] Hirata T, Akiyama K, Yamamoto h, et al. Sintering behavior of O3-Al2O3 ceramics. Journal of the European Ceramic Society, 2000, 20(2): 195-199. [17] tance of the 95 chromium alumina ceramics. 37-40. [18] WU Ai-Jun, Wang Hong-Xia, LI Huan-Niu, plication of chrome-corundum brick. 165-166. [19] T2O10(5): [20] 2O3. of Materials Science Letters, 1999, 18(14): 1115-1117. [21] Tartaj J, Messing G L. Effect of the addition of Fe2O3 on the Mi-crostructural development of boehmite-derived alumina. Journal of Materials Science Letters, 1997, 16(2): 168-170. [22] A͇ʯȻИI(y)(bio)(zhn)SY/T 5108-2006. ֧ ΄ܼyԇ]. [23] LI Zhi-Gang, YE Fang-Bao. Effects of chrome oxide on phase ,microstructure and strength of zero cement corundum castables. Bulletin of the Chinese Ceramic Society, 2008, 27(1): 147-150. [24] Partyka Janusz J. Wear resistance of crystals of corundum doped Cr2O3, TiO2, and CoO. Journal of the European Ceramic So-ciety, 1997, -1612. [25] ANG Zheng-Fang, et al. Fabrication , 26(2): 1-7. [26] et al. (15): 502-505. , . մɹˇW(xu). : ЇpI(y) -73. Refractories, 1996, (2): 56-58. [29]et al. Influence of of Inorganic 2007, 22(3): 423-426. in reaction sintering of Al2O3/SiO2 containing mixed powders. Journal of Ceramics, 2002, 23(3): 149-155.
Aڭh(hun)Ƽ˾ɽ(ni)дџX\ИI(y)I(y)Kџͷ۠32580010001250Ŀ a(chn)50-500ÿa(chn)ɼg(sh)D(zhun)ɳO(sh)a(chn)Ʒ Aڭh(hun)Ƽ˾I(y)YԴߎXИI(y)a(chn)ĻD(zhun)G\D(zhun)ʿ10%a(chn)5%10%ܺĽ20%a(chn)_50-500t/dӹ(ji)ܭh(hun)ֱԃ18637113703(̖ͬ)Aڭh(hun)Ƽ˾\(w)Srgӭǰ텢^! I(y)ۺ(w)
上一篇ݶXa(chn)^䇵ĸCо下一篇Xұ |