|
ƫߎXˮϵˮƫߎXˮϵˮ̴,,L (ƼWٵVɽЧ_cȫc,100083) ժ Ҫ:ͨ^yƫߎXˮϵĿˮˮ̶Ⱥwϵş,оƫߎXȱecȵPϵ,̽ӑwϵşcWYˮȵ(lin)ϵY:50%(ni),ɰ{ďLٶSuӿ,]ˡϡЧƫߎXɺЧɽЧЧ|eģͶرˏͺϲwϵĿ;ˮˮ̶S䓽u,SrgӺ;SwϵӋşu,şu,ӋşcWYˮB(yng)oںͺڴڲͬľPϵ,Ӌşcɰ{ȾP PI~ ƫߎX; ; ˮ̶; ˮ; ɺЧ; ɽҷ ЈD̖:TU522 īI־a:A ¾̖: Hydration and Properties of High Volume Metakaolin Cement-based Materials QIAO Chun-yu, NI Wen, WANG Chang-long (Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China) Abstract: To study the relation between content and specific surface area of metakaolin and compressive strength, compressive strength is measured as well relative hydration degree of cement and heat evolution. The relation between heat evolution between heat evolution and nonevaporable water or compressive strength is also discussed. And the material microstructure is observed by scanning electron microscope. The results are shown as follows. As the amount of blended metakaolin increases in range of 50%, the rate of mortar strength development increases. The compressive strength of different mortars can be quantified by effective surface model which takes dilution effect, heterogeneous nucleation effect and pozzolanic reaction into consideration. The relative hydration degree of cement increases as blended metakaolin increases while it increases first and then decreases when time goes on. The max hydration heat decreases and heat increment increases as the amount of MK increases. At the early ages the linear relation between cumulative heat and nonevaporable water amount is different from that at the late age. And the linear relation exists between cumulative heat and mortar strength at the early age. KEY WORDS metakaolin; strength; relative degree of hydration; heat of hydration; heterogeneous nucleation effect; pozzolanic reaction ƫߎX(MK)ǸߎXճV600-800ߜџõĸɽһ [1],cCH γC-S-H zC 4AH 13C 3AH 6ԼC 2ASH 8[2]ƫߎXЧظzwϵĿY|(zh)M,wϵWܺ;Ե[1, 3-5],䃞(yu)ܵԽԽWߵďVPע ո:2014-06-23;ӆ:2014-07-22 Ŀ:Ҹgоl(f)չӋ(863Ӌ)(2012AA062405) һ:̴(1989-),,ӱg,ƼWʿо ͨ: (1961-),,ӱ,ƼW,ʿ,ʿ Frias[6]оMKˮɰ{şӰ,ɽһԵڹҲhڷú,ƫߎXҌˮşƵĴMKhatib[7]оSMKӺB(yng)orgL,wϵпС20nmĿռu,MK@ˮ{wYJustice[8]о͓r¼ȴMKڻȵø@,MKwϵ(ni)CH,ЧظwϵWܺ;ԡXٻ[9]о˵͓r( ЧɃɲֽM:ˮຬͮa(chn)ġϡЧ͵Vϓa(chn)ıɺЧȜxY,һˮұ(w/c>0.42)ĝ{w,ˮڡϡЧˮwˮoM,@ڴ˕rwϵ(ni)ˮˮˮƗl;Vϱijɺ-LЧʹˮܳMɺ-L,Mwϵ(ni)ˮˮ,˿wF(xin)ЧMwϵˮˮ̶Ƶ,Cyr[12, 13]Ч|ģͽcVϱȱe֮gĶPϵģвwϵֽM:ϡЧVϱɺЧͻɽЧϡЧzwϵ(ni)ˮ౻VĽY,漰wϵ(ni)ˮຬĜpԼˮұȵɺЧһNЧ,ˮܳMֿڵVϱijɺcɺ-L,@һЧMˮˮ,ˮˮ̶[11-14]ɽЧһNWЧ,ˮˮa(chn)CHcеĻԽMְl(f)şᷴɻɽҷa(chn),wϵ^Yܾиá Ч|eģ[12-14]cMK֮gĶPϵ,̽wϵşcwϵ|(zh)׃Wܰl(f)չ֮gPϵ,ԼMKͺϲwϵW,|(zh)׃,ş^YӰ,MKڻI(y)еĴṩһָ 1 1.1 ԭ ԭϞˮ(P.I. 42.5)ƫߎX,ˮĵıȱe424.1m2/Kg,ƫߎXıȱe1307.7m2/KgԭϵĻWɷֲֺքeҊ1͈D1ɈD1֪, ƫߎXwhСˮwɱ1֪,ƫߎXĻWMɻSiO 2Al 2O 3,ߺ֮_96% 1 ԭϻWɷ(w.t.%) Table 1 Chemical Compositions of Raw Materials (w.t.%) SiO 2 Al 2O 3 Fe 2O 3 MgO CaO Na 2O K 2O LOI C 3S C 2S C 3A C 4AF C S H 2 PC 22.51 6.34 2.48 3.85 60.05 0.3 0.66 2.1 59.88 17.49 6.22 10.55 5.72 MK 5 4.89 41.71 0.42 0.5 0.66 0.15 0.08 0.28 1.2 450g ,10% (MK10)ˮ 72890鲢ھƾнKֹˮMyԇ(j)īI[15]GB/T12960-2007ˮMֵĶyṩķ,yMK0MK20MK35MK50ĽMԇKĻWYˮԼƫߎXķȡ{Kĥ,(652)C к24Сr,úKRt(ni)1000C Ɵ,{ԇKĻWYˮW ne Ӌʽ: (1) m 165C ɺԇӵ|(zh)(g);m 21000C Ɵԇӵ|(zh)(g);W mk, c =W mk, I *p W c, I*(1-p),pMK,W mk, IW c, IքeMKˮğʧ }xܽⷨyԇMK-PCͺzwϵMKW MK: W MK = p-[W HCl / (1-W ne) - (1-p)*W c,HCl]/W MK,HCl(2)W HClMK-PC{(jng)}ܽ|(zh)֔(sh);W c,HCl鼃ˮ{(jng)}ܽ|(zh)֔(sh);W MK,HClMK(jng)}ܽ|(zh)֔(sh);W newϵWYˮ TA˾TAM Airxy{wˮş,yrg7,ֺ23,ÿ ԇYȡ2ԇӵƽֵò˾SUPER 55l(f)R(FE-SEM)^첻ͬˮrgzw^ò 2 YcӑՓ 2.1 D2ɰ{ԇKͬgڵďȰl(f)չSMK,Lٶȼӿ졣MK-PCɰ{37쿹ȾSӶ,ҾPCɰ{;MK50,MK-PCɰ{ԇ28쿹Ⱦ^PCɰ{,ͬMeȲpС;MK-PC ɰ{90쿹Ⱦ^PCɰ{,Nr(>20%)ȷքeL18.9%,20.6%16.9%,ڵ͓wϵڿL@ɰ{ۏҲڅݡMK̶^,ɰ{ďҪˮˮSMK,wϵеˮຬp,ˮˮ̶ȵӲԵˮຬ͌Ȯa(chn)Ӱ,ڏͺɰ{ďS͡SrgL,MKcˮˮγɵCHl(f)ɽҷ,ɸˮa(chn),ɰ{,ͺɰ{28r^PCɰ{uL;ͺzwϵĻɽҷ@,@ڏڵ͓wϵ C o m p r e s s i o n S t r e n g t h M p a Time/ Day F l e x u r a l S t r e n g t h / M P a Time/ Day a b D2 ɰ{Ȱl(f)չ(a:b:ۏ) Fig. 2 Strength development curve of mortars(a: compressive strength; b: flexural strength) MK-PCɰ{ďˮMKɲֹͬṩ,ɰһr,߅^(q)eMK|(zh)֔(sh)pˮLawrence[14]Jͺɰ{RNЧMγɵ: R=R dilution R R pz,,R dilutionˮຬpٵġϡЧa(chn)ď,R՞铽ϱɺЧa(chn)ď,R pzԵVϻɽЧa(chn)ďȡ VόwϵܵͻWЧ,UϡЧcˮˮ̶֮gPϵ,Lawrence[14]о˲ͬʯӢw(ƽ215m)-ˮwϵ( (j)Cyr[12, 13]Փ,ɺЧͻɽЧҪˮw͵Vwӽ,SVϓ,ˮຬup,ɷNwx|ĸʽ,ҪxһЧʵą(sh),õͺwϵ(ni)MKcλ|(zh)ˮ|Ч|eS effRպͦR pzcS eff֮gƵĶPϵ[9-11],, (3) (4) ʽ(3)R0ͬgڻɰ{,pVϓ,a,bc(jng)(sh),aa pzքeˮ͵V֮gMKɺЧͻɽЧ,crgP,oV;bˮȱe(m2/kg),cˮ༚P;cһȡֵ1,oVʽ(4),SMKcλ|(zh)ˮ|e(m2/kg),S SVϵıȱe(m2/kg), Ч,crg,ԼVϷNoP,HcpP,oV(jng)(sh)k,mnһk=0.7,m=36.8,n=3.40[12] ʽ(3)ͬMK-PCͺɰ{RcЧ|eS eff֮gPϵMДM,wYҊD3ɈD3֪,C˓ϓ,ȺЧʵһϵصCyr ģͽy(tng)һ˵VϱɺúͻɽҷW,ܺõرMK-PCͺzwϵMKϏȵЧ S t r e n g t h I n c r e a s e /M P a Efficient Surface Area/m 2/Kg D3 PC-MK ɰ{MK Ч|ecL֮gPϵM 2.2 MK CSH C D4a wϵ(ni)ˮˮ̶, N o n e v a p o r a b l e W a t e r (% w .t .) D4 MK-PC wϵĻWYˮ(a)MK (b) Fig. 4 Nonevaporable water contents (a) and MK reaction amount (b) in the MK-PC pastes MK-PC wϵĦֵҊD5,䔵(sh)ֵSMK Ӷ,SrgLpС,ˮ90gڃ(ni)ֵ1,MK a(chn)ġϡЧˏͺϲwϵˮұ,mȻ(3)ˮұȵˮˮ̶[11, 14],SˮrgL,wϵ(ni)ˮp,ϡЧԞˮˮṩëˮ,Ķںˮˮ̶ȡ,MK ıɺЧͨ^ˮܳMɺcɺ-LMwϵ(ni)ˮˮ;ɽЧˮˮγɵCH ,CH ĜpٴʹˮˮM,gӴMˮˮS, ϡЧˮˮ̶ȵĴMu@,֮MK cλ|(zh)ˮw֮gЧ|eS eff u,ɺЧͻɽҷˮˮĴMu,NCƵĹͬ¦ֵSuˮA,ϡЧMK ıɺЧͻɽЧwϵ(ni)ˮˮĴMu,ֵu;SˮrgL,wϵ(ni)MK ɽҷm(x)M,w MK @,˕rwϵ(ni)ˮˮڅȫ,MK-PC ͺϲwϵcPC wϵ֮gˮˮ̶ȵIJusС,F(xin)ֵڜpС 2.3 DM: ,Ӻͦ ͺψD6b ֪,SMK ,Q max upС,(ni)併@;Q max uwϵķşҪԴˮˮ,SMK u,ˮຬupС,ˮa(chn)ğu,wϵşQ max uQ max ҪcϡЧMK ıɺЧͻɽЧPSMK ,NЧwϵ(ni)ˮˮĴMu,cͬrMK ɽҷşu,ߵįBЧʹQ max u
u m u l a i v e H e a t / J / g Time/h a b D6 MK-PCwϵӋş(a)Ӌş(b) Fig. 6 Cumulative heat (a) and max cumulative heat in MK-PC pastes(b) Ӌşӳwϵ(ni)|(zh)׃^,cܰl(f)չPϵoD7鲻ͬgڸPC-MKͺzwϵӋşcWYˮɰ{֮gPϵڲwϵڷşʮ,90wϵˮˮͻɽҷٶup,̶څȫ,ڈD7ӋşQ maxc90ĻWYˮ ɈD7(a)֪,WYˮcӋPϵ,ڼ237rwϵĻWYˮcӋPϵһ,ڼ90rPϵcA@ɈD7(b)֪,gAwϵcşھPϵ wϵ(ni)ڴˮg,MK^,ɽҷwϵ,WYˮԼşӰ푻ɺ,ȡQڴA(ni)ˮˮ,ˮĻWYˮӋ֮gچһıPϵ,ʹڲͬgӋşcWYˮ֮gPϵһwϵ(ni)ˮˮڅȫ,MKɽҷuռ(j)λ,䷴şcWYˮ֮gıPϵͬˮ,Ķ90gڕrwϵşcWYˮ֮gPϵcAβͬV an Breugel[17]Jˮϵďcˮ̶֮gھPϵ,ˮˮ̶cˮş֮gҲھPϵ,ˏͺϲϵڏcş֮gھPϵ
D7 MK-PCwϵӋˮcWYˮ(a)(b)Pϵ Fig 7 Relations between cumulative heat and nonevaporable water (a) and compressive strength (b) 3 YՓ (1) 50%(ni),SMK,ͺɰ{LڏȾPCɰ{,wϵڵ͓wϵ䏊Lٶȸ@,]ˡϡЧƫߎXɺЧͻɽЧЧ|eģͿԶͺϲwϵĿR (2) MK-PCͺzwϵ,ϡЧƫߎXɺЧͻɽЧMˏͺϲwϵ(ni)ˮˮ,ˮˮ̶ȦSMKu,SrgӺ,90gڃ(ni)䔵(sh)ֵʼK1 (3) 50%(ni),SMK,wϵӋşQ maxu,(ni)併@;ӋşQ maxuˮ,MK-PCͺzwϵӋşc仯WYˮɰ{ȾPϵ;ˮ,ӋşcWYˮPϵͬ īI: [1] Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review[J]. Cement and Concrete Composites. 2001, 23(6): 441-454. [2] Dunster A M, Parsonage J R, Thomas M J K. The pozzolanic reaction of metakaolinite and its effects on Portland cement hydration[J]. Journal of Materials Science. 1993, 28(5): 1345-1350. [3] G U Neyisi E, Geso U G Lu M, Mermerda C S K I M. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin[J]. Materials and structures. 2008, 41(5): 937-949. [4] Gruber K A, Ramlochan T, Boddy A, et al. Increasing concrete durability with high-reactivity metakaolin[J]. Cement and Concrete Composites. 2001, 23(6): 479-484. [5] Poon C S, Kou S C, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials. 2006, 20(10): 858-865. [6] Frias M, de Rojas M, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars[J]. Cement and Concrete Research. 2000, 30(2): 209-216. [7] Khatib J M, Wild S. Pore size distribution of metakaolin paste[J]. Cement and Concrete Research. 1996, 26(10): 1545-1553. [8] Justice J M, Kurtis K E. Influence of Metakaolin Surface Area on Properties of Cement-Based Materials[J]. Journal of Materials in Civil Engineering. 2007, 19(9): 762-771. [9] Xٻ,ղ,ڽ. ƫߎXĸܻWо[J]. όW. 2001, 4(1): 74-78. QIAN Xiaoqian, ZHAN Shulin, LI Zongjin. Research of the physical and mechanical properties of the high performance concrete with metakaolin[J]. Journal of Building Materials. 2001, 4(1), 74-78. (in Chinese) [10] Wild S, Khatib J M, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete[J]. Cement and Concrete Research. 1996, 26(10): 1537-1544. [11] Oey T, Kumar A, Bullard J W, et al. The filler effect: the influence of filler content and surface area on cementitious reaction rates[J]. Journal of the American Ceramic Society. 2013, 96(6): 1978-1990. [12] Cyr M, Lawrence P, Ringot E. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength[J]. Cement and Concrete Research. 2006, 36(2): 264-277. [13] Cyr M, Lawrence P, Ringot E. Mineral admixtures in mortars: quantification of the physical effects of inert materials on short-term hydration[J]. Cement and concrete research. 2005, 35(4): 719-730. [14] Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars: effect of inert materials on short-term hydration[J]. Cement and concrete research. 2003, 33(12): 1939-1947. [15] ,㺱,. ˮ-úҏͺzˮ̶ȵо[J]. όW. 2010, 13(5): 584-588. LI Xiang, Aruhan, YAN Peiyu. Research on hydration degree of cement-fly ash complex binders[J]. Journal of Building Materials. 2010, 13(5): 584-588. (in Chinese) [16] Schindler A K, Folliard K J. Heat of hydration models for cementitious materials[J]. ACI Materials Journal. 2005, 102(1). [17] Van Breugel K. Simulation of hydration and formation of structure in hardening cement-based materials. Delft: Delft University of Technology[D]. Doctoral thesis, 1991.
Aڭh(hun)Ƽ˾ɽ(ni)дџߎXИI(y)I(y)32580010001250Ŀ a(chn)50-200ÿa(chn)ɼgD(zhun)ɳOa(chn)Ʒ Aڭh(hun)Ƽ˾I(y)YԴߎXИI(y)a(chn)ĻD(zhun)G\D(zhun)ʿ10%a(chn)5%10%ܺĽ20%a(chn)_50-500t/dӹ(ji)ܭh(hun)ֱԃ18637113703(̖ͬ)Aڭh(hun)Ƽ˾\Srgӭǰ텢^! I(y)ۺ
上一篇ߎX⁰یȼϵӰ下一篇ߎXcմa(chn) |